BLA for collaborative decision

Institut de Recherche en Informatique de Toulouse

Bipolar Leveled sets of Arguments a new framework for collaborative decision

Florence Bannay, Romain Guillaume

IRIT, Toulouse University, France

February 2015

Workshop BRA - Madeira

F. Bannay, R. Guillaume

Workshop BRA - Madeira

Addressed problem

Institut de Recherche en Informatique de Toulouse

Provide a tool for helping people to make a collaborative decision.

- Classical decision analysis :
 - first formulate the decision goals
 - identify the attributes of potential alternatives
 - choose
- Our particular deliberation problem :
 - involve several agents
 - distributed and incomplete knowledge about the alternatives
 - objective is to check the acceptability of an alternative

Recruitment Example

Institut de Recherche en Informatique de Toulouse

• Recruitment done according to the decision goals :

goal	meaning	polarity	level
ap	don't want an anti-social person	θ	0.5
ej	hire an efficient person for the job	\oplus	1
ph	find a person able to present herself	\oplus	0.5
et	find a person easy to train	\oplus	1
st	hire a <mark>st</mark> able person	\oplus	0.5

• Features of a candidate (attributes) :

feature	meaning	feature	meaning
cbs	CV bad spelling	i	introverted candidate
cgr	CV good readability	jhop	job hopper
cps	CV poorly structured	lpe	long prof. experience
eb	educ. background	spe	exp. specific for the job
gp	good personality	$oldsymbol{u}$	unmotivated candidate

Institut de Recherche en Informatique de Toulouse

How to make a collaborative decision?

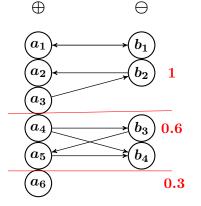
Aim = to choose an alternative that agrees everyone

- reach an agreement about the importance of the goals
- Preach an agreement about the attributes that are useful
- reach an agreement about the decision process
- Share the knowledge about a new alternative
- decide according to the agreements done
- 🗕 go to 4

Contents

- Introduction
 - Addressed problem
 - Example

- Fixing collectively the goals and attributes
 - Bipolar Leveled Argument set
 - Arguments
 - Attacks
- Validation of arguments for a precise candidate
 - Knowledge of voters
- 4 Decide about Admissibility of a candidate
 - Realized goal
 - Admissibility Statuses
 - Admissibility thresholds
 - Several agents : Vote Strategies



Institut de Recherche en Informatique de Toulouse

Bipolar Leveled Argument set

arguments in favor of the candidate

arguments against the candidate

Arguments

Institut de Recherche en Informatique de Toulouse

Definition

A basic argument a is a pair (arphi, g) where

- ullet $reas(a)=arphi\in \mathscr{L}_F$ (propostional language about features) and
- $concl(a) = g \in LIT_G$ (literals of a propositional language about goals).

Level and polarity of an argument = level and polarity of its conclusion.

Example

- a = (eb, ej) : hiring a candidate with a good educational background will achieve the goal to have an efficient person for the job. polarity=⊕, level=1
- b = (u, ¬ej): hiring an unmotivated candidate will make fail the goal to have an efficient person for the job. polarity=⊖, level=1

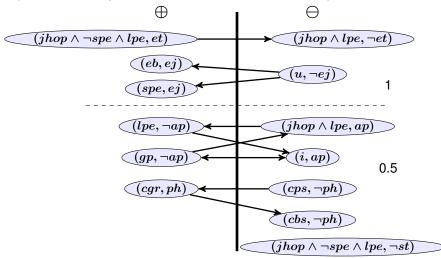
Attacks

Institut de Recherche en Informatique de Toulouse

Definition (attacks)

Arguments a and b are conflicting iff $concl(a) \land concl(b) \vdash \bot$ and $reas(a) \land reas(b) \nvDash \bot$.

if a and b are conflicting then :


- either only one attack between e.g. a attacks b meaning that when $K \vdash reas(a) \land reas(b)$ the goal concl(a) is achieved
- or two symmetric attacks : a attacks b and b attacks a meaning that when K ⊢ reas(a) ∧ reas(b) we don't know whether concl(a) or concl(b) is achieved.

Recruitment BLA

Institut de Recherche en Informatique de Toulouse

Bipolar set of arguments associated to the vacant position :

Contents

Institut de Recherche en Informatique de Toulouse

- Introduction
 - Addressed problem
 - Example
- 2 Fixing collectively the goals and attributes
 - Bipolar Leveled Argument set
 - Arguments
 - Attacks
- 3

Validation of arguments for a precise candidate

Knowledge of voters

- Decide about Admissibility of a candidate
 - Realized goal
 - Admissibility Statuses
 - Admissibility thresholds
- Several agents : Vote Strategies

Knowledge of voters

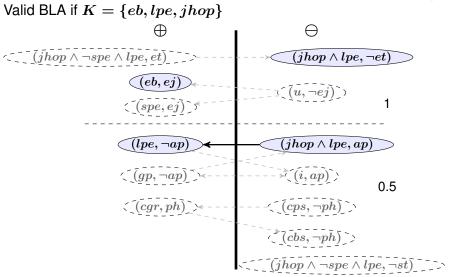
Institut de Recherche en Informatique de Toulouse

Given a bla A, given a candidate c, given a knowledge base K:

- the feature φ holds for candidate $c: K \vdash \varphi$,
- the feature φ does not hold for $c: K \vdash (\neg \varphi)$,
- the feature φ is unknown for $c : K \nvDash \varphi$ and $K \nvDash \neg \varphi$.

Definition (Valid argument according to *K*)

an argument $a = (\varphi, g)$ is valid iff $K \vdash \varphi$


Definition (Valid BLA according to K)

set of valid arguments according to K

Example of valid BLA

Contents

- Introduction
 - Addressed problem
 - Example
- Pixing collectively the goals and attributes
 - Bipolar Leveled Argument set
 - Arguments
 - Attacks
 - Validation of arguments for a precise candidate
 - Knowledge of voters
- Decide about Admissibility of a candidate
 - Realized goal
 - Admissibility Statuses
 - Admissibility thresholds
 - Several agents : Vote Strategies

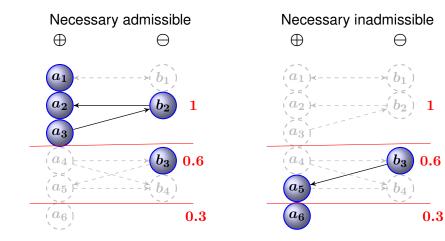
Realized goal and Admissibility status

Definition (realized goal)

The goal g is realized iff $\exists a$ an unattacked argument s.t. $concl(a) \equiv g.$

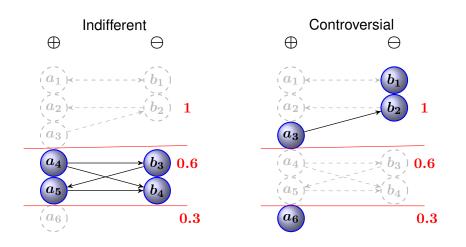
 $\begin{array}{l} R = set \ of \ realized \ goals \\ R_e^{\oplus} \\ R_e^{\oplus} \end{array} = positive \ realized \ goals \ of \ level \ e \\ R_e^{\oplus} \\ \end{array} = negative \ realized \ goals \ of \ level \ e \\ \end{array}$

Definition (admissibility status)


Let $e = \max_{g \in \mathbb{R}} l(g)$. The status of c is :

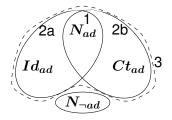
- Necessary admissible (N_{ad}) if $\mathbb{R}^{\oplus}_{a} \neq \emptyset$ and $\mathbb{R}^{\oplus}_{a} = \emptyset$
- Possibly admissible (Π_{ad}) if $\mathbb{R}_{e}^{\oplus} \neq \varnothing$
- Indifferent (Id) if $R = \emptyset$
- Possibly inadmissible ($\Pi_{\neg ad}$) if $\mathbb{R}_{e}^{\ominus} \neq \emptyset$
- Necessary inadmissible $(N_{\neg ad})$ if $\mathbb{R}^{\ominus}_{e} \neq \varnothing$ and $\mathbb{R}^{\oplus}_{e} = \varnothing$
- Controversial (Ct) if $\mathbb{R}_{e}^{\oplus} \neq \emptyset$ and $\mathbb{R}_{e}^{\ominus} \neq \emptyset$

Necessary admissible/inadmissible



BLA for collaborative decision

Indifferent/Controversial



Institut de Recherche en Informatique de Toulouse

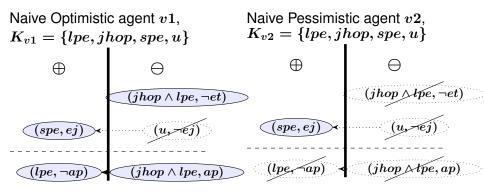
Admissibility thresholds

- threshold 1 : $c \in N_{ad}$
- threshold 2a : $c \in N_{ad} \cup Id_{ad}$
- threshold 2b : $c \in N_{ad} \cup Ct_{ad}$
- threshold 3 : $c \in N_{ad} \cup Ct_{ad} \cup Id_{ad}$

Contents

- Introduction
 - Addressed problem
 - Example
- Pixing collectively the goals and attributes
 - Bipolar Leveled Argument set
 - Arguments
 - Attacks
 - 3 Validation of arguments for a precise candidate
 - Knowledge of voters
- Decide about Admissibility of a candidate
 - Realized goal
 - Admissibility Statuses
 - Admissibility thresholds
 - Several agents : Vote Strategies

Voter strategy



- Common knowledge = features of a candidate, supposed consistent and complementary
- Vote= give information about a candidate
- Strategy= choice of the information to hide/give wrt private preferences about candidates
 - Naive Optimistic strategy = give all the literals that are known to hold and appear in a positive argument for my preferred candidate.
 - Naive Pessimistic strategy = give information only if it cannot be used against my preferred candidate

Example of optimistic/pessimistic strategy

Summary

- new framework for decision making under incomplete and distributed knowledge
- the BLA is given before start
- the decision depends only on the instanciation of the BLA for a candidate
- several voters : give features that concern the candidate in a simultaneous vote ⇒ automatic decision
- admissibility statuses are conform to classical rules of multi-criteria decision
- BLA : visual aspect, easy to read and create
- provide a neutral process to compute a group decision

Perspectives

- develop a software to handdle the creation/modification of a BLA
- study more refined strategies :
 - Take into account the arguments that are not possible (their support does not hold)
 - Take into account the potential undisclosed features.
- modelize some classical decision situation under a BLA framework ...

Institut de Recherche en Informatique de Toulouse

Belief Change and BLA

- revise the features concerning a candidate
 - allow for inconsistency in the shared knowledge
 - several turns : revise the strategy according to the previous votes of other voters
- revise the BLA : change criterias, change the level of a goal, some features are no more possible...
- update the BLA in order to accept a candidate...

References I

Institut de Recherche en Informatique de Toulouse

Bannay, F. and Guillaume, R. (2014).

Towards a transparent deliberation protocol inspired from supply chain collaborative planning.

In Laurent, A. and Strauss, O., editors, *International Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems (IPMU), Montpellier, France,* number 443 in CCIS, pages 335–344. Springer.

Bannay, F. and Guillaume, R. (2015).

Qualitative deliberation based on bipolar leveled sets of arguments under incomplete distributed knowledge.

In under submission.

Bonnefon, J., Dubois, D., and Fargier, H. (2008). An overview of bipolar gualitative decision rules.

In Riccia, G. D., Dubois, D., Kruse, R., and Lenz, H.-J., editors, *Preferences and Similarities*, volume 504 of *CISM Courses and Lectures*, pages 47–73. Springer.

Dung, P. M. (1995).

On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games.

Artificial Intelligence, 77:321-357.

Inclusion and Duality

Classic rules of bipolar decision problem

Institut de Recherche en Informatique de Toulouse

Definition

The order of magnitude of a set of goals $G \subset \mathscr{L}_G$ is :

$$\mathit{OM}(G) = \max_{g \in G} l(g)$$
 and $\mathit{OM}(\varnothing) = 0$

Definition (decision rules [Bonnefon et al., 2008])

Given two candidates c and c' with their associated realized goals ${\tt R}$ and ${\tt R}'.$ Dominance relations :

- $c \succeq_{Pareto} c'$ iff $OM(\mathbb{R}^{\oplus}) \ge OM(\mathbb{R}'^{\oplus})$ and $OM(\mathbb{R}^{\ominus}) \le OM(\mathbb{R}'^{\ominus})$
- $c \succeq_{BiPoss} c'$ iff $OM(\mathbb{R}^{\oplus} \cup \mathbb{R}'^{\ominus}) \ge OM(\mathbb{R}^{\ominus} \cup \mathbb{R}'^{\oplus})$
- $c \succeq_{BiLexi} c'$ iff $|\mathbb{R}_{\delta}^{\oplus}| \ge |\mathbb{R}_{\delta}'^{\oplus}|$ and $|\mathbb{R}_{\delta}^{\ominus}| \le |\mathbb{R}_{\delta}'^{\ominus}|$ where $\delta = Argmax_{\lambda}\{|\mathbb{R}_{\lambda}^{\oplus}| \ne |\mathbb{R}_{\lambda}'^{\oplus}|$ or $|\mathbb{R}_{\lambda}^{\ominus}| \ne |\mathbb{R}_{\lambda}'^{\ominus}|\}$

where \succeq_r stands for "is *r*-preferred to".

Rationality of admissibility thresholds

Institut de Recherche en Informatique de Toulouse

Thresholds $\{1, 2a, 2b, 3\}$ are rational w.r.t. the rules *Pareto*, *Biposs* and *BiLexi* : inadmissible never preferred to admissible.

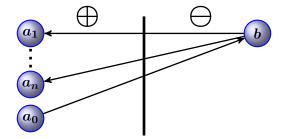
Theorem

- $\forall c \in Ad \text{ with } Ad \in \{1, 2a, 2b, 3\} \text{ and } \forall c' \in \mathscr{C} \setminus Ad, \quad c' \not\succ_r c, \forall r \in \{Pareto, BiPoss, BiLexi\}$
- $\forall c \text{ inside } \{1\} \text{ and } \forall c' \text{ in } \{2a, 2b, 3\} \setminus \{1\}, c' \not\succ_r c, \\ \forall r \in \{Pareto, BiPoss, BiLexi\}.$
- Threshold 2a and Threshold 2b are not distinguishable with {*Pareto*, *BiPoss*, *BiLexi*}.

Links with Dung's arg. framework

- Dung's defense notion [Dung, 1995] has no interest for BLA
- an argument that is defended is still attacked in the BLA

Prop.


 $a\mathcal{R}b$ and $b\mathcal{R}d$ then d is not involved for computing the admissibility.

	Dung	BLA
aim :	reason with inconsistencies	decide with a (maybe incomplete) consistent knowledge base and pro/con args.
attacks	 conflict between 2 arg. that can not hold simultaneously concl. are opposite pieces of knowledge "what argument is defeated" : 	 involves 2 reasons (that may hold simultaneously) with an opposite consequence in terms of decision. "what argument applies in
	one correct, the other bad arguments attacked by the bad can be correct (defense).	priority when both reasons hold"

Reinforcement of arguments

- $A = \{a_1, ..., a_n\}$ set of arguments and b s.t. $concl(b) \equiv \neg concl(a_i).$
- each argument of *A* is less important than *b*.
- two arguments of A that are valid together are stronger than b.
- \Rightarrow new argument a_0 s.t. a_0 is valid iff two arguments of A are valid :
- $\Rightarrow a_0 = (\bigvee_{i \in [1,n], j \in [i,n], i \neq j} (reas(a_i) \land reas(a_j))), g).$

